ИЗМЕРИТЕЛИ-РЕГУЛЯТОРЫ МНОГОФУНКЦИОНАЛЬНЫЕ МИР – 7200 (ГЗ121-02)

* Руководство по эксплуатации

ЭИ.146.00.000РЭ

Волгоград (844)278-03-48, Воронеж (473)204-51-73, Екатеринбург (343)384-55-89, Казань (843)206-01-48, Краснодар (861)203-40-90, Красноярск (391)204-63-61, Москва (495)268-04-70, Нижний Новгород (831)429-08-12, Новосибирск (383)227-86-73, Ростов-на-Дону (863)308-18-15, Самара (846)206-03-16, Санкт-Петербург (812)309-46-40, Саратов (845)249-38-78, Уфа (347)229-48-12

Единый адрес: enr@nt-rt.ru www.eni.nt-rt.ru

СОДЕРЖАНИЕ

1 НАЗНАЧЕНИЕ	4
2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	5
3 ОБОЗНАЧЕНИЕ	8
4 УСТРОЙСТВО И ПРИНЦИП РАБОТЫ	9
5 МАРКИРОВКА И ПЛОМБИРОВАНИЕ	
6 УПАКОВКА	16
7 МЕРЫ БЕЗОПАСНОСТИ	16
8 МЕТОДИКА ПОВЕРКИ	16
9 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	29
10 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	29
ПРИЛОЖЕНИЕ А	30
ПРИЛОЖЕНИЕ Б	31
ПРИЛОЖЕНИЕ В	32
ПРИЛОЖЕНИЕ Г	33
ПРИЛОЖЕНИЕ Д	34
ПРИЛОЖЕНИЕ Е	35
ПРИЛОЖЕНИЕ Ж	36
ПРИЛОЖЕНИЕ И	37
ПРИЛОЖЕНИЕ К	39

Руководство по эксплуатации содержит сведения о технических характеристиках, устройстве и принципе работы измерителей-регуляторов многофункциональных МИР-7200-02 (далее блоков), а также сведения о мерах безопасности и техническом обслуживании.

1 НАЗНАЧЕНИЕ

- 1.1 Блоки предназначены для:
- измерений (преобразования в цифровой код) силы и напряжения постоянного тока, сопротивления (в том числе сигналов от термопар и термометров сопротивления);
- преобразования цифрового кода в выходной унифицированный сигнал постоянного тока с гальванической развязкой в диапазонах 0...5 мA, 4...20 мA, 0...20 мA (аналоговый выход);
- индикации цифрового кода на встроенных дискретно-аналоговом и цифровом индикаторах;
- передачи цифрового кода через гальванически развязанный интерфейс последовательной передачи данных RS-485 в компьютер (цифровой выход);
- сигнализации превышения пороговых значений измеряемым параметром и релейного регулирования.
- 1.2 Блоки могут применяться в различных отраслях промышленности в системах автоматического контроля, регулирования и управления технологическими процессами.
- 1.3 Блоки имеют один измерительный канал с гальванической развязкой вход-выход и три гальванически развязанных канала коммутации цепей переменного и постоянного тока (зависит от варианта исполнения) для дискретного регулирования измеряемого параметра.
- 1.4 Состояния каналов коммутации (замкнуто или разомкнуто) зависят от уставок (уровня, гистерезиса и логики срабатывания) и значения измеряемого параметра. Значения уставок задаются потребителем.
- 1.5 Значение выходного тока имеет линейную или корнеизвлекающую зависимость от значения измеряемого параметра.
- 1.6 В состав блоков входит встроенный гальванически развязанный источник питания постоянного тока с выходным напряжением 24 В 40 мА для питания внешних датчиков. Формирователь выходного тока блока можно использовать, как источник тока с клавиатурным управлением.
 - 1.7 Блоки измеряют сигналы:
- от термометров сопротивления (TC) с номинальными статическими характеристиками (HCX) в соответствии с ГОСТ 8.625-2006;
- от термоэлектрических преобразователей (ТП), имеющих НСХ в соответствии с ГОСТ Р 8.585-2001;
 - силы постоянного тока в диапазонах 0...5 мА, 4...20 мА и 0...20 мА;
- напряжения постоянного тока в диапазонах $0...20\,\mathrm{mB},\ 0...50\,\mathrm{mB},\ 0...100\,\mathrm{mB},\ 0...1\,\mathrm{B};$
 - сопротивления в диапазоне 0...320 Ом.
 - 1.8 Цифровой канал блоков преобразует измеряемый параметр в:
 - четырехразрядный цифровой код основного табло блока;
 - последовательный код стандарта RS-485.
- 1.9 Блоки являются микропроцессорными приборами. Задание режимов работы возможно с кнопок на передней панели и (или) с компьютера. Связь компьютера с блоками осуществляется через интерфейс последовательной передачи данных RS-485.

- 1.10~ При эксплуатации блоки соответствуют по устойчивости и прочности ГОСТ 52931:
- по климатическим воздействиям группе исполнения C3: (диапазон температур минус 10 до плюс 50 °C.;
 - по механическим воздействиям группе исполнения L3;
- по атмосферным воздействиям группе исполнения P1 (атмосферное давление от 84 до 106,7 к Π a).

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1 Основные технические и метрологические характеристики блоков приведены в таблицах 1, 2.

Таблица 1 – Технические характеристики блоков

№	Наименование параметра и единица измерения	Значение параметра
1	Количество каналов измерения	1
2	Количество каналов токового выхода	1
3	Количество каналов управления (коммутации) электрическими цепями	2
4	Схема подключения термометров сопротивления*	двух-, трех-, четырехпро- водная
5	Диапазоны выходного унифицированного сигнала силы постоянного тока*, мА	05, 420, 020
6	Скорости обмена информацией по интерфейсу*, кбит/с	2,4115,2
7	Диапазон сетевых адресов*	1255
8	Функциональная зависимость величины выходного сигнала силы постоянного тока от входного измеряемого параметра*	линейная, функция корнеизвлечения
9	Пределы допускаемых основных приведенных погрешностей с линейной зависимостью	см. таблицу 2
10	Пределы допускаемой основной приведенной погрешности корнеизвлечения, %	± 0,1
11	Пределы допускаемой основной приведенной погрешности срабатывания сигнализации и управления, не более	предела допускаемой основной погрешности
12	Пределы допускаемой дополнительной приведенной погрешности аналогового и цифрового выходов, вызванной изменением температуры окружающего воздуха от нормальной $(23\pm2)^{\circ}$ С до любой температуры в пределах $(-10+50)$ на каждые 10° С, не более	предела допускаемой основной погрешности
13	Пределы допускаемой дополнительной погрешности аналогового и цифрового выходов, вызванной воздействием повышенной влажности до 95% при температуре +35°C, не более	предела допускаемой основной погрешности
14	Пределы допускаемой дополнительной погрешности аналогового и цифрового выходов, вызванной изменением напряжения питания от номинального, в пределах (85265)В, не более	0,5 предела допускаемой основной погрешности
15	Погрешность компенсации температуры холодного спая термопары	включена в допускаемую основную погрешность канала измерения сигналов от термопар
16	Сопротивление нагрузки аналогового выхода для диапазона выходного тока 05 мA, Ом, не более	1500
17	Сопротивление нагрузки аналогового выхода для диапазонов выходного тока 420 мА, 020 мА, Ом, не более	400

Продолжение таблицы 1

№	Наименование параметра и единица измерения	Значение параметра
18	Номинальное выходное напряжение встроенного источника питания (ИП) при токе нагрузки $040~\text{mA},~\text{B}$	24
19	Отклонение выходного напряжения ИП от номинального при токе нагрузки 040 мA, %, не более	±0,2
20	Амплитуда пульсации выходного напряжения ИП при токе нагрузки $040~\mathrm{mA},$ %, не более	0,1
21	Ток срабатывания защиты ИП, мА, не более	40
22	Ток короткого замыкания ИП, мА, не более	20
23	Изменение выходного напряжения ИП, вызванное изменением температуры окружающего воздуха, %, не более	±0,1
24	Изменение выходного напряжения ИП, вызванное воздействием вибрации, $\%$, не более	±0,2
25	Номинальное напряжение питания переменного тока, В	220
26	Диапазон напряжения питания, В	85265
27	Номинальная частота напряжения питания переменного тока, Гц	50±0,5
28	Мощность, потребляемая от сети переменного тока, ВА, не более	6,5
29	Габаритные размеры, мм, не более	160×30×215
30	Масса, кг, не более	0,4
I . *	имечание: изменяется пользователем.	

Таблица 2- Основные метрологические характеристики блоков

Тип первичного преобразователя	Условное обозначе- ние	Диапазон измерений¹, °С	Диапазон изменений сопротивления преобразователя по НСХ, Ом ³	бц ² , %	δa ² , %
TC 50M W=1,4260	Cu65	-50+200	39,3592,62		
TC 53M W=1,4260	Cu63	-50+200	41,7198,17		
TC 100M W=1,4260	Cu61	-50+200	78,69185,23		
TC 50M W=1,4280	Cu85	-50+200	39,2392,80		
TC 53M W=1,4280	Cu83	-50+200	41,3898,34	± 0,2	± 0,25
TC 100M W=1,4280	Cu81	-50+200	78,46185,60		
TC 50П W=1,3910	PtH5	-50+600	40,0158,56		
TC 100Π W=1,3910	PtH1	-50+600	80,00317,11		
TC Pt100 W=1,3850	Ptb1	-50+600	80,31313,71		
			Диапазон изменений э.д.с. преобразователя по HCX ³ , мВ		
ТП ТЖК (Ј)	FC	-501100	-2,43163,792		
TΠ TXK (L)	HE	-50600	-3,00549,108		
TΠ TXA (K)	НА	-501300	-1,88952,410	$\pm 0,5^{4}$	$\pm 0,7^{4}$
ТП ТПП (S)	PP	01700	017,947	± 0,3	± U, /
ТП ТПР (В)	Pr	3001800	0,43113,591		
TΠ TBP (A-1)	BP	02500	033,640		

Продолжение таблицы 2

Тип первичного преобразователя	Условное обозначе- ние	Диапазон измерений ¹ , мВ	Входное сопротивление ³ , МОм, не менее	б ц², %	δa ² , %
Напряжение	U20	020			
Напряжение	U50	050	0.1	. 0.2	+ 0.25
Напряжение	U100	0100	0,1	± 0,2	± 0,25
Напряжение	U1V	01000			
		мА	Входное напряжение между клеммами ³ I+ и I-, мВ, не более		
Ток	t020	05	500		
Ток	t420	420	2000	± 0,2	± 0,25
Ток	t05	020	2000		
		Ом	Ток через измеряемое сопротивление, мА		
Сопротивление	rr	0320	0,2	± 0,2	± 0,25

Примечания:

- 1 δц, δа Пределы допускаемой основной приведенной погрешности по цифровому и налоговому выходам;
- 2 Пределы измерения (нижнюю и верхнюю границы) параметра внутри диапазона задает пользователь (см. таблицу 3, п. 6,7,8,9,10);
 - 3 справочный параметр;
 - 4 с учетом погрешности компенсации температуры холодного спая термопары.

Компенсация температуры холодного спая термопар обеспечивается в диапазоне температур окружающего воздуха:

- (-10...+50) °С при измерении сигналов от термопар типов ТЖК(J), ТХК(L), ТХА(K) и ТПП(S);
- (0...+50) °С при измерении сигналов от термопар типов ТПР(В), ТВР(А-1).

2.2 Рабочие условия применения:

- температура окружающей среды от минус 10 до плюс 50 °C (нормальное значение температуры (23 ± 2) °C);
- влажность 95 % при температуре плюс 35 °C и более низких температурах без конденсации влаги;
 - атмосферное давление от 84 до 106,7 кПа;
 - частота вибрации от 5 до 25 Гц, амплитуда смещения 0,1 мм;
 - температура транспортирования от минус 50 до плюс 60 °C.
 - 2.3 Блоки по степени защиты по ГОСТ 14254 должны соответствовать IP 20.
- 2.4 При работе с блоками должны соблюдаться меры защиты от воздействия зарядов статического электричества.

3 ОБОЗНАЧЕНИЕ

Пример записи наименования блоков при заказе и в конструкторской документации:

МИР-7200 -
$$\Gamma$$
 3 1 2 1 - 02 - (0...100)% - 360 - $\Gamma\Pi$ 1 2 3 4 5 6 7 8 9 10

В условное обозначение блоков входят:

1 Наименование: МИР-7200

2 Вариант исполнения Γ – реле - коммутация постоянного тока 2 A, 250 В или переменного

каналов коммутации: тока 5 А, 250 В.

При отсутствии символа блок не имеет в своем составе каналов ком-

мутации.

3 Вариант исполнения 1 – сила и напряжение постоянного тока;

по типу измеряемых 2 – сопротивление и сигналы от термосопротивлений;

сигналов: 3 – сила и напряжение постоянного тока, сопротивление, сигналы от

термосопротивлений и сигналы от термопар.

4 Наличие аналогово- 0 – аналогового выхода нет;

го выхода: 1 — аналоговый выход. 5 Наличие интерфей- 0 — интерфейса нет;

са: 1 – интерфейс «RS-232» с адаптером ЭнИ-401;

2 – интерфейс «RS-485».

6 Наличие встроенно- 0 – встроенного источника питания нет;

го источника питания: 1 – встроенный источник питания.

7 Вариант конструктивного исполнения

тивного исполнения 02 – исполнение в щитовом корпусе ($160 \times 30 \times 215$). (приложение A):

8 Исполнение передней панели блока, диапазон измерений, единицы измерения (по (0...100) %; (0...100) мВ; по (0...100) °C;

заказу): (0...320) Ом.

9 Дополнительная

технологическая 360 - по заказу

наработка

10 Госповерка ГП

Примечание:

Вариант исполнения передней панели представлен в приложении Б. Возможно изготовление передней панели по эскизу заказчика.

4 УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

- 4.1 Структурная схема блока приведена в приложении В.
- 4.1.1 Входной преобразователь (ВП) обеспечивает преобразование значения входного параметра в напряжение, согласованное по диапазону с входным напряжением АЦП.
- 4.1.2 Аналого-цифровой преобразователь (АЦП) преобразует напряжение с выхода ВП в кол.
- 4.1.3 Модуль интерфейса (МИ) обеспечивает гальваническую развязку и согласование уровней микроконтроллерного модуля (МКМ) и линий интерфейса RS-485.
- $4.1.4\,$ Модуль реле (MP) обеспечивает коммутацию внешних цепей регулирования. Состояние реле зависит от значения измеренного параметра и уставок, задаваемых пользователем при эксплуатации. Логика управления реле описана в приложении Γ .
- $4.1.5\,$ Модуль формирователя выходного тока (ФВТ) обеспечивает формирование выходного тока.
 - 4.1.6 Модуль индикации и клавиатуры (МИК) обеспечивает:
- в рабочем режиме отображение значения измеряемого параметра или значения одной из уставок;
- в режиме ввода параметров отображение условных обозначений и значений, изменение и запись в память изменяемых параметров.
 - 4.1.7 Микроконтроллерный модуль (МКМ) управления обеспечивает:
 - расчет текущего значения измеряемого параметра по значению кода АЦП;
 - управление МИК;
 - управление МР;
 - управление ВП;
 - управление модулем ФВТ;
 - связь через МИ по интерфейсу RS-485 с компьютером.
- 4.1.8 МКМ имеет гальваническую развязку с модулем ФВТ, внешними цепями МР и цепями интерфейса RS-485.
 - 4.2 Вид передней и задней панелей блоков изображены на рисунках 1, 2.

Рисунок 2 – Вид задней панели блоков

- 4.2.1 На передней панели расположены:
- линейный аналого-дискретный светодиодный трехцветный индикатор (30 дискрет) (далее шкала);
- четырехразрядный семисегментный светодиодный индикатор (красный) (далее индикатор);
- индикатор «У1» светодиодный индикатор (красный) превышения установленного нижнего предела измеряемого параметра;

- индикатор «У2» светодиодный индикатор (красный) превышения установленного верхнего предела измеряемого параметра.
 - 4.2.2 Клавиатура состоит из 4 кнопок:
 - «|**◄**→» «возврат»;
 - «►» «вперед»;
 - «◀» «назад»;
 - «**◄**¬» «ввод».
 - 4.2.3 Цифровой индикатор предназначен для отображения:
- буквенно-цифровых наименований пунктов меню в режиме клавиатурного программирования параметров блока кнопками передней панели (таблица 3);
- буквенно-цифровых сообщений о состоянии блока в аварийных ситуациях сообщения об ошибках;
 - числовых значений измеряемого параметра в режиме измерения.
- 4.2.4 Индикаторы "У1" и "У2" отображают превышение уровня входного измеряемого сигнала нижнего и верхнего установленных пределов измеряемого параметра.
 - 4.2.5 Назначение кнопок:
- кнопка «| ◄—» предназначена для перевода блока из режима программирования в режим измерения, возврата в верхнее меню из подменю, отмены режима изменения значения параметра;
- кнопки «►» и «◄» в режиме программирования предназначены для выбора изменяемого параметра (пункта меню) и выбора значений параметров в направлении вперед или назад соответственно. В режиме измерения кнопки не влияют на работу блока;
- кнопка «◀ → » предназначена для ввода блока в режим программирования, входа в подменю из меню, ввода в режим изменения значения параметра, запись в память измененного значения параметра.

Схемы подключения внешних цепей в различных режимах измерения приведены в приложении Д.

- 4.2.6 На задней панели расположены клеммы (см. приложение Е):
- «220 В» для подсоединения сетевого шнура и измерительного заземления;
- Р1, Р2 для подключения внешних коммутируемых цепей к реле;
- − +24 В для подключения внешних цепей к встроенному источнику питания (ИП);
- RS4-85 для подключения кабеля компьютерного интерфейса;
- - I + для подключения нагрузки токового выхода;
- К1...К4 для подключения входных сигналов и первичных преобразователей.
- 4.3 Установка параметров блока кнопками передней панели.
- 4.3.1 Установка блока в режим просмотра и изменения параметров.
- $4.3.1.1~\mathrm{B}$ блоке применена защита параметров паролем от случайного изменения. Для просмотра и изменения параметров блока нажмите кнопку « $\blacktriangleleft^{\mathsf{J}}$ ». Возможны два варианта:
- если пароль не установлен (начальная заводская установка, см. таблицу 3), блок переходит в меню выбора параметров. На индикаторе появится обозначение первого редактируемого параметра «dAt» (см. таблицу 3), в этом случае пп.4.3.1.2-4.3.1.6 следует пропустить.
- если пароль установлен (см. пп.4.3.3) на индикаторе появится приглашение ввода пароля «0 $_$ $_$ ».
 - 4.3.1.2 Кнопками «▶» и «◄» установите значение цифры пароля (0...9).
- 4.3.1.3 Нажмите кнопку «◀¬¬» для введения в память значения этой цифры пароля. В следующем разряде индикатора высветится ноль.
 - 4.3.1.4 Выполните действия п.п.4.3.1.2, 4.3.1.3 для всех четырех цифр пароля.
- 4.3.1.5 После ввода четвертой (последней) цифры пароля на индикаторе появится сообщение «YES» или «Еrr» при верном или неверном вводе пароля соответственно.

4.3.1.6 Нажмите кнопку «◀Ј». На индикаторе появится обозначение первого редактируемого параметра «dAt».

Примечание 1:

Пример последовательности индикации при вводе пароля «2682»:

При неверно введенном пароле доступен только просмотр параметров блока!!!

При необходимости повтора ввода пароля, следует перевести блок в штатный режим нажатием кнопки «/ **◄**—» и выполнить действия по п.п.4.3.1.1-4.3.1.4.

Примечание 2:

Изменяемые параметры и их условные обозначения приведены в таблице 3.

- 4.3.1.7 Кнопками «►» и «◄» установите на индикаторе условное обозначение нужного параметра.
- 4.3.1.8 Нажмите кнопку «◀Ј». На индикаторе появится числовое значение выбранного параметра.
- 4.3.1.9 Для изменения значения параметра вновь нажмите кнопку «◀┛». Индикатор начнет мерцать.
- 4.3.1.10 Кнопками «►» и «◄» установите на индикаторе нужное значение параметра (см. таблицу 3).

Примечание 3:

Установка числовых значений параметров кнопками «►» и «◄» производится в двух режимах: пошаговом и сканирующем.

<u>Пошаговый режим</u> - однократное нажатие и отпускание кнопки. В результате значение параметра изменяется на одну единицу младшего разряда.

<u>Сканирующий режим</u> - изменение значения параметра кнопкой в нажатом положении. При удержании кнопки в нажатом положении происходит непрерывное изменение параметра. Скорость изменения увеличивается со временем удержания кнопки.

Сканирование прекращается:

- при отпускании кнопки;
- при достижении верхнего или нижнего предела параметра.
- 4.3.1.11 Нажмите кнопку «◀Ј», значение параметра запишется в памяти блока. Мерцание индикатора прекратится.
- 4.3.1.12 Для изменения следующего параметра нажмите кнопку «| **◄**—», на индикаторе появится обозначение текущего изменяемого параметра, далее см. п.п.4.3.1.7. Для выхода в штатный режим работы еще раз нажмите кнопку «| **◄**—».

Примечание 4:

Установленные на предприятии-изготовителе значения параметров приведены в таблице 3.

- 4.3.2 Для измерения и записи значения сопротивления линии при измерении сопротивления (в том числе термометры сопротивления) в режиме двухпроводной схемы измерения с компенсацией сопротивления линии необходимо выполнить следующие операции:
- 4.3.2.1 Перевести блок в режим отображения значения сопротивления линии (пункт меню "rLin") в соответствии с п.п.4.3.1.
- 4.3.2.2 Подключить к блоку 2х-проводную линию в соответствии с приложением Д. Закоротить свободные концы линии.
- 4.3.2.3 Перевести блок в режим измерения сопротивления линии, нажав кнопку «◀¬¬) ». При этом на индикаторе блока появится значение сопротивления линии в Ом.

- 4.3.2.4 Выждав не менее 20 сек., нажмите кнопку «◀Ј» для записи значения сопротивления линии в память блока.
 - 4.3.3 Первоначальная установка или изменение пароля блока.
- 4.3.3.1 Войдите в пункт меню "PSS1" в соответствии с п.п.4.3.1. На индикаторе появится приглашение ввода пароля «0 ».
 - 4.3.3.2 Выполните действия по п.п.4.3.1.2-4.3.1.4.
- 4.3.3.3 После ввода четвертой (последней) цифры пароля на индикаторе повторно появится приглашение ввода пароля «0 _ _ » для подтверждения правильности ввода.
 - 4.3.3.4 Выполните действия по п.п.4.3.1.2-4.3.1.4.
- 4.3.3.5 После ввода четвертой (последней) цифры пароля на индикаторе появится сообщение «YES» и будет произведена запись в память блока нового значения пароля, если **значение первого введенного пароля совпадет с повторно введенным значением**. В противном случае на индикаторе появится сообщение «Еrr» и новое значение пароля в память блока записано не будет.
- 4.4 При подключении блока к компьютеру через интерфейс RS485 возможно изменение параметров с помощью компьютерной программы. Описание протокола обмена, программа и описание работы с ней поставляется по отдельному заказу.

Таблица 3 - Обозначения и наименования пунктов меню в режиме клавиатурного программирования.

Условное обозна- чение	Наименование	Допустимые значения	Заводская установка
1 dAt	Тип входного датчика или сигнала	см. таблицу 2	rr
2 Sch ¹	Схема подключения сопротивления к входу блока	0 двухпроводная 1 двухпр. с компенсацией 2 трехпроходная 3 четырехпроходная	3
3 rLin ¹	Сопротивление двухпроводной линии для схемы подключения Sch=1 (см. п.п. 4.3.2, таблицу 2 п.2)	0 100 Ом	0
4 CutE ²	Сигнализация обрыва входной цепи	0 Запрещено1 Разрешено	0
5 UF	Количество знаков после запятой	0, 1, 2, 3	3
6 rnG ³	Управление диапазоном измерения входного параметра и режимом отображения на цифровом индикаторе	0 измеренный полный 1 измеренный заданный 2 условный полный 3 условный заданный	0
7 DPLo ⁴	Минимальное значение диапазона измерения	Диапазон значений измеря- емого параметра	таблица 2
8 DPHi ⁴	Максимальное значение диапазона измерения	Диапазон значений измеря- емого параметра	таблица 2
9 IoLo ⁵	Минимальное значение отображения	-999 9999	0
10 IoHi ⁵	Максимальное значение отображения	-999 9999	100
11 Ind	Сообщения индикатора в штатном режиме	0 Результат измерения1 Уставка 12 Уставка 2	0
12 ndt	Параметр усреднения (количество измерений)	4 20	20
13 Out ⁶	Установка режима аналогового выхода	0 0 мА – не изменяется 1 05 мА 2 020 мА 3 420 мА	3
14 Sqrt ⁷	Функция корнеизвлечения при формировании выходного тока	0 Запрещено 1 Разрешено	0

Условное обозна- чение	Наименование	Допустимые значения	Заводская установка
15 I_En ⁸	Клавиатурное задание тока аналогового выхода	0 Запрещено	0
	(режим источника тока)	1 Разрешено	
16 Icod ⁹	Уставка тока аналогового выхода (в режиме источника тока)	0.00 20.00 мА	0.00
17 C_CJ	Компенсация холодного спая при термопарных измерениях	0 Запрещено 1 Разрешено	0
18 Addr	Номер блока при подключении в сеть через RS485	1 255	0
19 SPd ¹⁰	Скорость передачи по интерфейсу RS-485	2400, 4800, 9600, 19200, 38400, 57600, 115200	19200
20 PSS1	Ввод пароля (см. п.п 4.3.3)	0000 9999	Не установлен
21 Ptr ¹⁰	Протокол обмена по RS-485	0 MODBUS	0
22 Lt	Режим работы линейного индикатора	таблица 4	AHA
23 LP ¹¹	Вид отображения линейного индикатора	0 риска 1 столбик	1
24 LA ¹²	Уровень яркости аналогового индикатора	0 15	15
25 Ld ¹²	Уровень яркости цифрового индикатора	0 15	15
26 rL1	Логика работы реле1	0 выключено	0
27 rL2	Логика работы реле2	1 вкл. при $X^{13} > (USi \pm GSi)$	0
	(см. приложение Г)	2 выкл. при X ¹³ > (USi± GSi) 3 включено	
28 US_1 ¹⁴	Уставка порога срабатывания канала 1	Диапазон значений измеря-	20% диапазона
	(см. приложение Г)	емого параметра	измерения
29 GS_1 ¹⁴	Уставка гистерезиса канала 1 (см. приложение Г)	0.1 1.0	0.1
30 US_2 ¹⁴	Уставка порога срабатывания канала 2 (см. приложение Г)	Диапазон значений измеря- емого параметра	80% диапазона измерения
31 GS_2 ¹⁴	Уставка гистерезиса канала 2 (см. приложение Г)	0.1 1.0	0.1

Примечание:

- 1 активен при dAt = Cu65, Cu63, Cu61, Cu85, Cu83, Cu81, PtH5, PtH1, Ptb1, rr;
- 2 недоступен при dAt = t020, t420, t05;

3 -

rnG=0 измеренный полный

Измерение входного параметра производится в полном диапазоне значений (см. таблицу 2).

При изменении входного параметра в полном диапазоне значений:

- значение параметра на цифровом индикаторе соответствует измеренному значению;
- аналоговая индикация производится на всю длину шкалы;
- выходной ток изменяется в соответствии с выбранным диапазоном (параметр Out таблицы 3 п.13 от 0 до 5 мA, от 0 до 20 мA или от 4 до 20 мA).

rnG=1 измеренный заданный

Измерение входного параметра производится в усеченном диапазоне, согласно заданным значениям DPLo и DPHi (см. таблицу 3 п.6, 7). При изменении входного параметра от DPLo до DPHi:

- значение параметра на цифровом индикаторе соответствует измеренному значению;
- аналоговая индикация производится на всю длину шкалы;
- выходной ток изменяется в соответствии с выбранным диапазоном (Out).

rnG=2 условный полный Измерение входного параметра производится в полном диапазоне значений. При изменении входного параметра в полном диапазоне значений:

- измеренное значение параметра для индикации на цифровом индикаторе преобразуется в диапазон, заданный значениям параметров IoLo и IoHi (см. таблицу 3 п.8, 9);
- аналоговая индикация производится на всю длину шкалы;
- выходной ток изменяется в соответствии с выбранным диапазоном (Out).

rnG=3 условный заданный Измерение входного параметра производится в усеченном диапазоне, согласно заданным значениям DPLo и DPHi.

При изменении входного параметра от DPLo до DPHi:

- измеренное значение параметра для индикации на цифровом индикаторе преобразуется в диапазон, заданный значениям параметров IoLo и IoHi;
- аналоговая индикация производится на всю длину шкалы;
- выходной ток изменяется в соответствии с выбранным диапазоном (Out).

При изменении диапазона измерения приведенная погрешность измерения исчисляется относительно полного диапазона изменения параметра!

- 4 активен при rnG = 2, 3;
- 5 активен при rnG = 1, 3;
- 6 при I_En = 1 параметр Out не активен. Выходной ток не зависит от результата измерения и определяется параметром Icod;
 - 7 не активен при dAt = U100, U75, t020, t420, t05, rr;
- 8 при I_En = 1 формирователь выходного тока переводится в режим источника тока, значение которого в диапазоне $0.00 \dots 20.00$ мА задается параметром Icod (см. таблицу 3 п.16);
 - 9 активен при I En = 1;
- 10 в дальнейших модификациях блока возможно расширение поддерживаемых протоколов обмена и количества скоростей обмена;
- 11 столбик на аналоговой шкале измеренный уровень входного параметра изображен в виде светящегося столбика от минимального значение до уровня, соответствующего измеренному значению;
- риска на аналоговой шкале измеренный уровень входного параметра изображен в виде светящегося сегмента в позиции, соответствующей измеренному значению.
- 12 значение параметра "0" соответствует минимальному уровню яркости индикаторов, значение параметра 15 максимально возможному уровню яркости;
 - 13 Х измеренное значение входного параметра;
- 14 уставки и гистерезис сбрасываются в заводские установки при изменении параметра dAt. При выборе параметра rnG=0 или rnG=1 уставки и гистерезис исчисляются в единицах измерения входного сигнала и находятся в диапазоне его изменения, при выборе параметра rnG=2 или rnG=3 уставки и гистерезис исчисляются в условных единицах, определяемых параметрами IoLo и IoHi и находятся в диапазоне значений, заданных этими параметрами.

Внимание!

Уставки вводятся с точностью 0.1, поэтому при значениях уставок больше или равным 1000.0 или меньше или раным -100.0 на индикаторе высвечивается только целая часть значения уставки. Дробная часть не видна (недостаточно разрядов индикатора). При этом на каждое одиночное нажатие кнопки уставка по прежнему изменяется на 0.1. На индикаторе в этом случае мы наблюдаем на каждые десять нажатий кнопки изменение младшего целого разряда на одну дискрету.

Таблица 4 - Режимы пинейного инликатора

	Уровень входного сиг-		Цвет указател	я сигнала		
Режим	нала	Указатель	сигнала	U1	U2	
	пала	риска	столбик	01	UZ	
Авария-Норма-	Авария					
	< U1 авария	Красный	Красный	Желтый	Желтый	
АНА	= U1(< порога) авария	Совпадает с U1	Красный	К/Ж	Желтый	
	= U1 (> порога) норма	Совпадает с U1	Зеленый	3/Ж	Желтый	
	U1 <hopma<u2< td=""><td>Зеленый</td><td>Зеленый</td><td>Желтый</td><td>Желтый</td></hopma<u2<>	Зеленый	Зеленый	Желтый	Желтый	
	= U2 (< порога) норма	Совпадает с U2	Зеленый	Желтый	3/Ж	
	= U2 (> порога) авария	Совпадает с U2	Красный	Желтый	К/Ж	
	> U2 авария	Красный	Красный	Желтый	Желтыі	
Авария-Предва	рительно-Норма					
	< U1 авария	Красный	Красный	Желтый	Желтыі	
	= U1(< порога) авария	Совпадает с U1	Красный	К/Ж	Желтыі	
	= U1 (> порога) предупр	Совпадает с U1	Красный	К/Ж	Желтыі	
АПН	U1<предупр <u2< td=""><td>Красный</td><td>Красный</td><td>Желтый</td><td>Желты</td></u2<>	Красный	Красный	Желтый	Желты	
	= U2 (< порога) предупр	Совпадает с U2	Красный	Желтый	К/Ж	
	= U2 (> порога) норма	Совпадает с U2	Зеленый	Желтый	3/Ж	
	> U2 норма	Зеленый	Зеленый	Желтый	Желты	
Норма-Предвар	ительно-Авария					
	< U1 норма	Зеленый	Зеленый	Желтый	Желты	
	= U1(< порога) норма	Совпадает с U1	Зеленый	К/Ж	Желты	
	= U1 (> порога) предупр	Совпадает с U1	Красный	3/Ж	Желты	
НПА	U1<предупр <u2< td=""><td>Красный</td><td>Красный</td><td>Желтый</td><td>Желты</td></u2<>	Красный	Красный	Желтый	Желты	
	= U2 (< порога) предупр	Совпадает с U2	Красный	Желтый	К/Ж	
	= U2 (> порога) авария	Совпадает с U2	Красный	Желтый	К/Ж	
	> U2 авария	Красный	Красный	Желтый	Желты	
Авария-Норма						
	< U2 авария	Красный	Красный	Нет	Желты	
AH	= U2(< порога) авария	Совпадает с U2	Красный	Нет	К/Ж	
AH	= U2 (> порога) норма	Совпадает с U2	Зеленый	Нет	3/Ж	
	> U2 норма	Зеленый	Зеленый	Нет	Желты	
Норма-Авария						
	< U1 норма	Зеленый	Зеленый	Желтый	Нет	
ЦΑ	= U1(< порога) норма	Совпадает с U1	Зеленый	3/Ж	Нет	
HA	= U1 (> порога) авария	Совпадает с U1	Красный	К/Ж	Нет	
	> U1 авария	Красный	Красный	Желтый	Нет	
Норма	•		_	-		
Н1 красный		Красный	Красный			
Н2 зеленый	Без уставок	Зеленый	Зеленый	Нет	Нет	
Н3 оранжевый		Желтый	Желтый			

<u>Примечание</u>: U1, U2 – уставка 1 и Уставка 2;

3/Ж – попеременно цвет риски меняется (Зеленый/Желтый);

К/Ж – попеременно цвет риски меняется (Красный/Желтый).

5 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

- $5.1\,$ Маркировка соответствует ГОСТ 26828-86 E, ГОСТ 9181-74 E, ГОСТ 12.2.020-76 и чертежу предприятия-изготовителя.
 - 5.2 Блок опломбирован представителем ОТК предприятия-изготовителя.
- 5.3 На транспортной таре в соответствии с ГОСТ 14192 должны быть выполнены несмываемой краской основные, дополнительные и информационные надписи, а также манипуляционные знаки, соответствующие наименованию знаков «Хрупкое осторожно!», «Верх».

6 УПАКОВКА

6.1 Упаковка производится в соответствии с ГОСТ 23170-78 Е, ГОСТ 9181-74 и чертежами предприятия-изготовителя и обеспечивает полную сохранность блоков.

7 МЕРЫ БЕЗОПАСНОСТИ

- 7.1 По степени защиты человека от поражения электрическим током блоки соответствуют классу II по ГОСТ 12.2.007.0-75.
- 7.2 Блоки имеют зажим измерительного заземления по ГОСТ 12.2.007. Перед началом работы необходимо проверить качество заземления.
- 7.3 При эксплуатации блоков необходимо соблюдать требования ГОСТ 12.3.019, «Правил технической эксплуатации электроустановок потребителей», «Правил техники безопасности электроустановок потребителей» и «Правил устройства электроустановок. ПУЭ», утвержденных Госэнергонадзором, а также руководствоваться указаниями инструкций по технике безопасности, действующих на объектах эксплуатации блоков.

8 МЕТОДИКА ПОВЕРКИ

- 8.1 Поверку блоков проводят органы Государственной метрологической службы или метрологическая служба потребителя, имеющая право поверки. Требования к поверке, порядок и основные этапы проведения определяются ПР 50.2.006-94 «ГСИ. Поверка средств измерений. Организация и порядок проведения».
 - 8.2 Интервал между поверками составляет 2 года.
 - 8.3 Средства поверки:
 - образцовая катушка сопротивлений R331 100 Ом, класс точности 0,01 %;
 - магазин сопротивлений P4831, класс точности 0,02/2*10⁻⁶;
 - мультиметр PC5000, класс точности 0,05 %;
 - калибратор-измеритель ИКСУ-2000, класс точности А по МП НКГЖ.408741.001РЭ.

Допускается применение другого оборудования имеющего соответствующие технические характеристики, не превышающие 1/3 предела допускаемого абсолютного значения основной погрешности поверяемого прибора (ГОСТ 22261-94).

8.4 Требования к квалификации поверителей.

Поверка средств измерений осуществляется физическим лицом, аттестованным в качестве поверителя в соответствии с ПР 50.2.012-94.

К поверке блоков допускают лиц, изучивших эксплуатационную документацию на блоки, средства их поверки и настоящую методику поверки ЭИ.146.00.000РЭ, а также имеющих опыт поверки средств измерений, прошедших инструктаж по технике безопасности в установленном порядке.

- 8.5 Поверку проводить при следующих условиях:
- температура окружающего воздуха плюс (23±2) °C;
- относительная влажность воздуха 30...80 %;
- атмосферное давление 84...106 кПа;
- частота питающей сети (50±0,5) Гц;
- напряжение питающей сети (220±10) В;
- внешние электрические и магнитные поля должны либо отсутствовать, либо находится в пределах, не влияющих на характеристики блоков.

Время выдержки блоков после включения питания перед началом испытаний не менее 10 минут.

- 8.6 Поверка включает в себя:
- внешний осмотр блока;
- определение допускаемой основной приведенной погрешности цифрового и аналогового выхода.
 - 8.7 При внешнем осмотре блока проверить:
 - наличие маркировки;
 - отсутствие внешних повреждений;
 - состояние клемм и разъемов.

Эксплуатация с механическими повреждениями корпуса, соединений, наличием загрязнений между контактами не допускается.

- 8.8 Определение допускаемой основной приведенной погрешности.
- 8.8.1 Определение допускаемой основной приведенной погрешности для режима измерения силы постоянного тока подключают по схеме, приведенной в приложении Ж.
- 8.8.2 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «Тока 0...20 мА».
- 8.8.3 По методике п.п.4.3, используя клавиатуру блока, установить значения изменяемых пользователем параметров в соответствие с таблицей 3 для проводимой проверки.
- 8.8.4~ При помощи прибора ИКСУ 2000 подать входной сигнал согласно таблице 5. Зафиксировать величины падения напряжения на резисторе R1 $U_{R1действ.i}$ и значение выходного кода цифрового канала $K_{действ.i}$ для всех значений входного сигнала X_i согласно таблице 5.
- 8.8.5 Измерение величины выходного тока блока производить косвенно по величине падения напряжения на резисторе R1. Величину падения напряжения на резисторе R1 контролировать вольтметром PV1. Величина выходного тока блока связана с величиной падения напряжения на резисторе R1 соотношением (1).

$$I_{\text{\tiny BMX}} = \frac{U_{\text{R1}}}{R} \qquad (1),$$

где:

 U_{R1} – значение падения напряжения на резисторе R;

Івых – значение выходного тока;

R – значение сопротивления резистора R1.

8.8.6 Выходной код цифрового выхода контролировать на цифровом индикаторе блока.

8.8.7 Значения задаваемых входных и расчетных выходных параметров блоков приведены в таблице 5.

Таблица 5

	Входной сигнал	Расчетные значения выходных сигналов				мального и минималь- выходных сигналов
Nº	Ток, мА	Цифрового выхода К _{рас}	Напряжение $U_{R1\ pac},B$	Аналогового выхода I_{pac} , мА	Цифрового выхода (Кмакс - Кмин)	Аналогового выхода (Івых макс - Івых мин), мА
1	0,10	0,100	0,0025	0,025		
2	5,00	5,000	0,1250	1,250		
3	10,00	10,00	0,2500	2,500	20,00	5,000
4	15,00	15,00	0,3750	3,750		
5	20,00	20,00	0,5000	5,000		

8.8.8 Задавая значения входного тока I_{BX} для всех пунктов таблицы 5 контролировать значение кода цифрового выхода $K_{\text{действ}}$ и значение падения напряжения на резисторе R_1 U_{R1} действ.

8.8.9 Рассчитать значение основной приведенной погрешности цифрового выхода γ_1 по формуле (2).

$$\gamma_1 = \frac{K_{\text{действ.}} - K_{\text{pac.}}}{K_{\text{torus}} - K_{\text{torus}}} \cdot 100\%$$
 (2);

где:

К_{действ.} – действительное значение выходного кода цифрового выхода;

 $K_{pac.}$ – расчетное значение выходного кода цифрового выхода;

 $K_{\text{макс.}}$ – максимальное значение выходного кода для диапазона измерения;

К_{мин} – минимальное значение выходного кода для диапазона измерения.

8.8.10 Рассчитать значение основной приведенной погрешности аналогового выхода по формуле (3).

$$\gamma_2 = \frac{U_{\text{R1 действ.}} - U_{\text{R2 pac.}}}{R1 \cdot (I_{\text{BMX MAKC.}} - I_{\text{BMX MHH.}})} \cdot 100\%$$
 (3);

где:

 U_{R1} действ. – действительное значение падения напряжения на резисторе R1;

 $U_{R1\ pac.}$ — расчетное значение падения напряжения на резисторе R1, согласно таблине 5:

 $I_{\text{вых макс.}}$ — максимальное значение выходного тока для диапазона измерения;

 $I_{\text{вых мин.}}$ — минимальное значение выходного тока для диапазона измерения;

R1 – значение сопротивления резистора R1.

Значения γ_1 и γ_2 должны соответствовать таблице 2.

8.9 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «Тока 4...20 мА».

8.9.1 Проверку производить по методике п.п.8.8.3. Значения задаваемых входных и расчетных выходных параметров блока приведены в таблице 6.

Таблица 6

Входной сигнал	Расчетные зн	начения выходн		мального и минималь- і выходных сигналов	
Ток, мА	Цифрового выхода К _{рас}	Напряжение U _{R1 рас} , В	Аналогового выхода І _{рас} , мА	Цифрового вы- хода ($K_{\text{макс}}$ - $K_{\text{мин}}$)	Аналогового выхода ($I_{\text{вых макс.}}$ - $I_{\text{вых мин.}}$), мА
4,10	4,100	0,003	0,0312		
8,00	8,000	0,125	1,2500		
12,00	12,00	0,250	2,5000	16,00	5,000
16,00	16,00	0,375	3,7500		
20,00	20,00	0,500	5,0000		

Значения γ_1 и γ_2 должны соответствовать таблице 2.

8.10 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «Тока 0...5 мА».

Проверку производить по методике п.п.8.8.3. Значения задаваемых входных и расчетных выходных параметров блока приведены в таблице 7.

Таблица 7

Входной сигнал	Расчетные за	начения выходні		мального и минималь- и выходных сигналов	
Ток, мА	Цифрового выхода, К _{рас}	Напряжение $U_{R1\ pac}, B$	Аналогового выхода, I_{pac} , мА	Цифрового выхода $(K_{\text{макс}}$ - $K_{\text{мин}})$	Аналогового выхода ($I_{\text{вых макс}}$ - $I_{\text{вых мин}}$), мА
0,10	0,100	0, 010	0,100		
1,25	1,250	0,125	1,250		
2,50	2,500	0,250	2,500	5,000	5,000
3,75	3,750	0,375	3,750		
5,00	5,000	0,500	5,000		

- 8.11 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «Сопротивления 0...320 Ом».
 - 8.11.4 Проверку производить по схеме 0.
- 8.11.5 По методике п.п.4.3, используя клавиатуру блока, установить значения изменяемых пользователем параметров в соответствие с таблицей 3 для проводимой проверки.
- 8.11.6~ При помощи магазина сопротивлений P4831 подать входной сигнал согласно таблице 8. Зафиксировать величины падения напряжения на резисторе R1 $U_{R1действ.i}$ и значение выходного кода цифрового канала $K_{действ \ I}$ для всех значений входного сигнала X_i согласно таблице 8.
- 8.11.7 Измерение величины падения напряжения на резисторе R1 U_{R1} действ и значение выходного кода цифрового выхода $K_{\text{действ}}$ производить по методике п.п.8.8.5. Рассчитать значение основной приведенной погрешности по методике п.п.8.8.9, п.п.8.8.10.

Таблица 8

Входной сигнал	Расчетные значения выходных сигналов				мального и минима- й выходных сигналов
Сопротив- ление R_2 , Ом	Цифрового выхода К _{рас}	Напряжение U _{R1 рас} , В	Аналогового выхода I_{pac} , мА	Цифрового выхода $(K_{\text{макс}} - K_{\text{мин}})$	Аналогового выхо- да ($I_{\text{вых макс}}$ - $I_{\text{вых мин}}$), мА
1,6	1,600	0,0025	0,025		
80,0	80,00	0,1250	1,250		
160,0	160,0	0,2500	2,500	320,0	5,000
240,0	240,0	0,3750	3,750		
320,0	320,0	0,5000	5,000		

Значения γ_1 и γ_2 должны соответствовать таблице 2.

- 8.12 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «TC 50M c W_{100} =1,428».
- 8.12.1 Измерения проводить по схеме, приведенной в приложении Ж, по методике п.п.8.11.1. Значения задаваемых входных и расчетных выходных параметров блока заданы в таблице 9.

Таблица 9

	Входной задавае- Расчетные значения выходных сигналов			Разность максимального и минима- льного значений выходных сигналов		
Темпе- ратура, °С.	Сопро- тивление R2, Ом	Цифрового выхода К _{рас}	Цифрового вы-		Цифрового вы- хода ($K_{\text{макс}}$ - $K_{\text{мин}}$)	Аналогового выхода ($I_{\text{вых макс}}$ - $I_{\text{вых мин}}$), мА
-48,00	39,66	-48,0	0,004	0,040		
13,00	52,78	13,00	0,126	1,260		
75,00	66,04	75,00	0,250	2,500	250,0	5,000
138,00	79,53	138,0	0,376	3,760		
200,00	92,80	200,0	0,500	5,000		

Значения γ_1 и γ_2 должны соответствовать таблице 2.

8.13 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «TC 53M c W_{100} =1,428».

Проверку проводить по методике п.п.8.11.1. Значения задаваемых входных и расчетных выходных параметров блока заданы в таблице 10.

Таблица 10

Входной задавае- мый параметр		Расчетны	е значения вых сигналов	кодных	Разность максимального и минима- льного значений выходных сигналов	
Темпе- ратура, °С.	Сопро- тивление R2, Ом			Цифрового выхода $(K_{\text{макс}}$ - $K_{\text{мин}})$	Аналогового выхода ($I_{\text{вых макс}}$ - $I_{\text{вых мин}}$), мА	
-48,00	42,04	-48,0	0,004	0,040		
13,00	55,95	13,00	0,126	1,260		
75,00	70,01	75,00	0,250	2,500	250,0	5,000
138,00	84,30	138,0	0,376	3,760		
200,00	98,37	200,0	0,500	5,000		

8.14 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «TC 100M c W_{100} =1,428».

Проверку проводить по методике п.п.8.11.1. Значения задаваемых входных и расчетных выходных параметров блока заданы в таблице 11.

Таблица 11

	і́ задавае-	Расчетные значения выходных			Разность максимального и мини-		
мыи па	араметр		сигналов		мального выходных сигналов		
Темпера- тура, °С.	Сопротив- ление R2, Ом	Цифрового выхода К _{рас}	Напряжение $U_{R1\ pac}, B$	Аналогово- го выхода, I _{pac} , мА	Цифрового вы- хода ($K_{\text{макс}}$ - $K_{\text{мин}}$)	Аналогового выхода ($I_{вых}$ макс - $I_{вых мин}$), мА	
-48,00	79,32	-48,0	0,004	0,040			
13,00	105,56	13,00	0,126	1,260			
75,00	132,10	75,00	0,250	2,500	250,0	5,000	
138,00	159,06	138,0	0,376	3,760			
200,00	185,60	200,0	0,500	5,000			

Значения γ_1 и γ_2 должны соответствовать таблице 2.

8.15 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «TC 50M c W_{100} =1,426».

Проверку проводить по методике п.п.8.11.1. Значения задаваемых входных и расчетных выходных параметров блока заданы в таблице 12.

Таблица 12

	Входной задавае- Расчетные значения выходных сигналов			Разность максимального и мини- мального выходных сигналов		
Темпера- тура, °С.	Сопротив- ление R2, Ом	Цифрового выхода K_{pac}		Цифрового вы- хода ($K_{\text{макс}}$ - $K_{\text{мин}}$)	Аналогового выхода ($I_{вых}$ $_{макс}$ - $I_{вых мин}$), мА	
-48,00	39,77	-48,0	0,004	0,040		
13,00	52,77	13,00	0,126	1,260		5,000
75,00	65,98	75,00	0,250	2,500	250,0	
138,00	79,41	138,0	0,376	3,760		
200,00	92,62	200,0	0,500	5,000		

Значения γ_1 и γ_2 должны соответствовать таблице 2.

8.16 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «TC 53M c W_{100} =1,426».

Проверку проводить по методике п.п.8.11.1. Значения задаваемых входных и расчетных выходных параметров блока заданы в таблице 13.

Таблица 13

	і задавае-	Расчетные значения выходных		Разность максимального и мини-			
мый па	араметр		сигналов		мального н	выходных сигналов	
Темпера- тура, °С.	Сопротив- ление R2, Ом	Цифрового выхода К _{рас}	Напряжение $U_{R1 pac}$, В	Аналогово- го выхода, І _{рас} , мА	Цифрового вы- хода ($K_{\text{макс}}$ - $K_{\text{мин}}$)	Аналогового выхода ($I_{вых}$ макс - $I_{вых мин}$), мА	
-48,00	42,16	-48,0	0,004	0,040			
13,00	55,94	13,00	0,126	1,260		5,000	
75,00	69,94	75,00	0,250	2,500	250,0		
138,00	84,17	138,0	0,376	3,760			
200,00	98,17	200,0	0,500	5,000			

8.17 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «TC 100M c W_{100} =1,426».

Проверку проводить по методике п.п.8.11.1. Значения задаваемых входных и расчетных выходных параметров блока заданы в таблице 14.

Таблина 14

	Входной задавае- Расчетные значения выходных сигналов			Разность максимального и мини- мального выходных сигналов		
Темпера- тура, °С.	Сопротив- ление R2, Ом	Цифрового выхода K_{pac}		Цифрового вы- хода ($K_{\text{макс}}$ - $K_{\text{мин}}$)	Аналогового выхода ($I_{вых}$ макс - $I_{вых мин}$), мА	
-48,00	79,54	-48,0	0,004	0,040		
13,00	105,54	13,00	0,126	1,260		
75,00	131,96	75,00	0,250	2,500	250,0	5,000
138,00	158,81	138,0	0,376	3,760		
200,00	185,23	200,0	0,500	5,000		

Значения γ_1 и γ_2 должны соответствовать таблице 2.

8.18 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «ТС 50П».

Проверку проводить по методике п.п.8.11.1. Значения задаваемых входных и расчетных выходных параметров блока заданы в таблице 15.

Таблица 15

	і́ задавае- араметр	Расчетные значения выходных сигналов			Разность максимального и мини- мального выходных сигналов	
Темпера- тура, °С.	Сопротив- ление R2, Ом			Цифрового вы- хода ($K_{\text{макс}}$ - $K_{\text{мин}}$)	Аналогового выхода ($I_{\text{вых}}$ макс - $I_{\text{вых мин}}$), мА	
-47,00	40,61	-47,0	0,00231	0,0231		
113,00	72,05	113,0	0,12538	1,2538		
275,00	102,37	275,0	0,2500	2,5000	650,0	5,000
438,00	131,32	438,0	0,37538	3,7538		
600,00	158,56	600,0	0,5000	5,0000		

Значения γ_1 и γ_2 должны соответствовать таблице 2.

8.19 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «ТС 100П».

Проверку проводить по методике п.п.8.11.1. Значения задаваемых входных и расчетных выходных параметров блока заданы в таблице 16.

Таблица 16

	Входной задавае- Расчетные значения выходных мый параметр сигналов			Разность максимального и мини- мального выходных сигналов		
Темпера- тура, °С.	Сопротив- ление R2, Ом	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Цифрового вы- хода ($K_{\text{макс}}$ - $K_{\text{мин}}$)	Аналогового выхода ($I_{вых}$ $_{макс}$ - $I_{вых мин}$), мА	
-47,00	81,21	-47,0	0,00231	0,0231		
113,00	144,10	113,0	0,12538	1,2538		
275,00	204,73	275,0	0,2500	2,5000	650,0	5,000
438,00	262,64	438,0	0,37538	3,7538		
600,00	317,11	600,0	0,5000	5,0000		

8.20 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «ТС Pt100».

Проверку проводить по методике п.п.8.11.1. Значения задаваемых входных и расчетных выходных параметров блока заданы в таблице 17.

Таблица 17

Входної	й задавае-	Расчетные значения выходных			Разность максимального и мини-		
мый п	араметр		сигналов		мального н	выходных сигналов	
Температура, °С.	Сопро- тивление R2, Ом	Цифрового выхода К _{рас}	Напряжение $U_{R1\ pac},$ В	Аналого- вого вы- хода, I _{pac} , мА	Цифрового выхода $(K_{\text{макс}} - K_{\text{мин}})$ $(I_{\text{вых макс}} - I_{\text{вых мин}}),$		
-47,00	81,50	-47,0	0,00231	0,0231			
113,00	143,43	113,0	0,12538	1,2538			
275,00	203,11	275,0	0,2500	2,5000	650,0	5,000	
438,00	260,10	438,0	0,37538	3,7538			
600,00	313,71	600,0	0,5000	5,0000			

Значения γ_1 и γ_2 должны соответствовать таблице 2.

- 8.21 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «Напряжения 0...100 мВ».
 - 8.21.1 Проверку производить по схеме приложения Ж.
- 8.21.2 По методике п.п.4.3, используя клавиатуру блока, установить значения изменяемых пользователем параметров в соответствие с таблицей 3 для проводимой проверки.
- 8.21.3~ При помощи прибора ИКСУ 2000A подать входной сигнал согласно таблице 18.~ Зафиксировать величины падения напряжения на резисторе R1~ $U_{R1действ.i}$ и значение выходного кода цифрового канала $K_{действ.i}$ для всех значений входного сигнала X_i согласно таблице 18.~
- 8.21.4 Измерение величины падения напряжения на резисторе R1 U_{R1} действ и значение выходного кода цифрового выхода $K_{\text{действ}}$ производить по методике п.п.8.8.5. Рассчитать значение основной приведенной погрешности по методике п.п.8.8.9, п.п.8.8.10.
- 8.21.5 Значения задаваемых входных и расчетных выходных параметров блока приведены в таблице 18.

Таблица 18

Входной задава- емый параметр	Расчетные значения выходных сигналов			Разность максимального и минимального выходных сигналов		
Напряжение $U_{\text{вx}}$, мВ	Код цифрового выхода K_{pac}	Напряжение $U_{R1 pac}$, B	Ток анало- гового вы- хода I _{pac} ., мА	Код цифрового выхода $(K_{\text{макс}} - K_{\text{мин}})$	Ток аналогового выхода $(I_{\text{вых макс}} - I_{\text{вых}})$ мин), мА	
0,50 25,00 50,00 75,00 100,00	0,500 25,00 50,00 75,00 100,0	0,0025 0,1250 0,2500 0,3750 0,5000	0,0250 1,2500 2,5000 3,7500 5,0000	100,0	5,000	

8.22 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «Напряжение 0...1000 мВ».

Проверку проводить по методике п.п.8.21.1. Значения задаваемых входных и расчетных выходных параметров блока заданы в таблице 19.

Таблица 19

Входной задавае- мый параметр	Расчетные значения выходных сигналов			Разность максимального и минимального выходных сигналов		
Напряжение U _{вх} , мВ	Код цифрового выхода K_{pac}		Код цифрового выхода $(K_{\text{макс}} - K_{\text{мин}})$	Ток аналогового выхода $(I_{\text{вых макс}}$ - $I_{\text{вых мин}})$, мА		
5,000	5,000	0,0025	0,0250		5,000	
250,0	250,0	0,1250	1,2500			
500,0	500,0	0,2500	2,5000	1000,0		
750,0	750,0	0,3750	3,7500			
1000,0	1000	0,5000	5,0000			

Значения γ_1 и γ_2 должны соответствовать таблице 2.

- 8.23 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «ТП ТЖК(J)».
 - 8.23.1 Проверку производить по схеме приложения Ж.
- 8.23.2 По методике п.п.4.3, используя клавиатуру блока, установить значения изменяемых пользователем параметров в соответствие с таблицей 3 для проводимой проверки.
- 8.23.3 Измерить температуру T_{xc} вблизи клемм K2 и K3. При измерении термометр должен касаться оголенных частей проводов. Измерение производить термометром с ценой деления не более 0.1 °C.
- $8.23.4\,$ Найти по таблицам ГОСТ Р $8.585\text{-}2001\,$ значение термоэдс U_{xc} в мВ, соответствующей температуре холодного спая T_{xc} .
 - $8.23.5\,$ Для каждого пункта таблицы 20 вычислить в мВ значение X_i по формуле (4).

$$X_{i} = U_{i} - U_{xc} \tag{4}$$

где: Ui - значение напряжения при T_{xc} =0 °C из таблицы 20, мВ;

 U_{xc} - значение термоэдс соответствующее температуре холодного спая Тхс, мВ.

- 8.23.6 При помощи прибора ИКСУ 2000 подать на вход вычисленные значения Хі.
- 8.23.7 Измерение величины падения напряжения на резисторе R1 U_{R1} действ и значение выходного кода цифрового выхода $K_{\text{действ}}$ производить по методике п.п. 8.8.5. Рассчитать значение основной приведенной погрешности по методике п.п. 8.8.9, п.п. 8.8.10.
- 8.23.8 Значения задаваемых входных и расчетных выходных параметров блока приведены в таблице 20.

Таблица 20

Входной задаваемый параметр		Расчетны	е значения выхо сигналов	рдных	Разность максимального и минимального выходных сигналов	
Темпера- тура, °С	Термоэдс при Т _{хс} =0 °C, мВ	Код цифрового выхода, К _{рас}	Напряжение UR1 _{pac} , B	Ток анало- гового выхода, І _{рас} , мА	Код цифрового выхода $(K_{\text{макс}} - K_{\text{мин}})$	Ток аналогового выхода ($I_{\text{вых макс}}$ - $I_{\text{вых мин}}$), мА
-44,00 240,00	-2,150 13,000	-44,0 240,0	0,00261 0,12609	0,0261 1,2609		
525,00	28,798	525,0	0,25000	2,5000	1150	5,000
810,00 1100,00	46,141 63,792	810,0 1100	0,37391 0,50000	3,7391 5,0000		

8.24 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «ТП ТХК(L)».

Проверку проводить по методике п.п. 8.23.1. Значения задаваемых входных и расчетных выходных параметров блока заданы в таблице 21.

Таблица 21

Входной задаваемый параметр		Расчетные значения выходных сигналов			Разность максимального и минимального выходных сигналов		
Темпе- ратура, °С	Термоэдс при Т _{хс} =0 °C, мВ	Код цифрового выхода, K_{pac}	Напряжение UR1 _{pac} , B	Ток ана- логового выхода, І _{рас} , мА	Код цифрового выхода $(K_{\text{макс}} - K_{\text{мин}})$	Ток аналогового выхода ($I_{\text{вых макс}}$ - $I_{\text{вых мин}}$), мА	
-47,00	-2,834	-47,0	0,00231	0,0231			
113,00	7,821	113,0	0,12538	1,2538			
275,00	20,729	275,0	0,25000	2,5000	650	5,000	
438,00	34,830	438,0	0,37538	3,7538			
600,00	49,108	600,0	0,50000	5,0000			

Значения γ_1 и γ_2 должны соответствовать таблице 2.

8.25 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «ТП ТХА(K)».

Проверку проводить по методике п.п. 8.23.1. Значения задаваемых входных и расчетных выходных параметров блока заданы в таблице 22.

Таблица 22

Входной задаваемый параметр		Расчетные значения выходных сигналов			Разность максимального и минимального выходных сигналов		
Темпе- ратура, °С	Термоэдс при Т _{хс} =0 °C, мВ	Код цифрового выхода, K_{pac}	Hапряжение UR1 _{pac} , B	Ток ана- логового выхода, I _{pac} , мА	Код цифрового выхода $(K_{\text{макс}} - K_{\text{мин}})$	Ток аналогового выхода $(I_{\text{вых макс}}\text{-} I_{\text{вых мин}}),$ мА	
-43,00 290,00 625,00 960,00 1300,00	-1,637 11,795 25,967 39,708 52,410	-43,0 290,0 625,0 960,0 1300	0,00259 012593 0,25000 0,37407 0,50000	0,0259 1,2593 2,5000 3,7407 5,0000	1350	5,000	

8.26 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «ТП ТПП(S)».

Проверку проводить по методике п.п. 8.23.1. Значения задаваемых входных и расчетных выходных параметров блока заданы в таблице 23.

Таблина 23

Входной задаваемый параметр		Расчетнь	Расчетные значения выходных сигналов			Разность максимального и минимального выходных сигналов		
Темпера- тура, °С	Термоэдс при Т _{хс} =0 °C, мВ	Код цифрового выхода, К _{рас}	Напряжение UR1 _{pac} , В	Ток анало- гового выхода, І _{рас} , мА	Код цифрового выхода $(K_{\text{макс}} - K_{\text{мин}})$	Ток аналогового выхода ($I_{\text{вых макс}}$ - $I_{\text{вых мин}}$), мА		
9,00	0,050	9,000	0,00265	0,0265				
425,00	3,500	425,0	0,12500	1,2500				
850,00	7,893	850,0	0,25000	2,5000	1700	5,000		
1275,00	12,856	1275	0,37500	3,7500				
1700,00	17,947	1700	0,50000	5,0000				

Значения γ_1 и γ_2 должны соответствовать таблице 2.

8.27 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «ТП ТПР(В)».

Проверку проводить по методике п.п. 8.23.1. Значения задаваемых входных и расчетных выходных параметров блока заданы в таблице 24.

Таблица 24

Входной задаваемый параметр		Расчетные значения выходных сигналов			Разность максимального и минимального выходных сигналов		
Темпера- тура, °С	Термоэдс при Т _{хс} =0 °C, мВ	Код цифрового выхода, К _{рас}	Напряжение UR1 _{рас} , В	Ток анало- гового выхода, І _{рас} , мА	Код цифрового выхода $(K_{\text{макс}} - K_{\text{мин}})$	Ток аналогового выхода ($I_{\text{вых макс}}$ - $I_{\text{вых мин}}$), мА	
308,00	0,455	308,0	0,00267	0,0267			
675,00	2,263	675,0	0,1250	1,2500			
1050,00	5,299	1050	0,2500	2,5000	1500	5,000	
1425,00	9,239	1425	0,3750	3,7500			
1800,00	13,591	1800					

Значения γ_1 и γ_2 должны соответствовать таблице 2.

8.28 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения «ТП ТВР(A-1)».

Проверку проводить по методике п.п. 8.23.1. Значения задаваемых входных и расчетных выходных параметров блока заданы в таблице 25.

Таблица 25

Входной задаваемый па- раметр		Расчетные значения выходных сигналов			Разность максимального и минимального выходных сигналов		
Темпера- тура, °С	Термоэдс при Т _{хс} =0 °C, мВ	Код цифрового выхода, К _{рас}	Напряжение UR1 _{pac} , B	Ток анало- гового выхода, І _{рас} , мА	Код цифрового выхода $(K_{\text{макс}} - K_{\text{мин}})$	Ток аналогового выхода ($I_{\text{вых макс}}$ - $I_{\text{вых мин}}$), мА	
13,00	0,159	13,00	0,0026	0,0260		5,000	
625,00	10,028	625,0	0,1250	1,2500			
1250,00	19,876	1250	0,2500	2,5000	2500		
1875,00	27,844	1875	0,3750	3,7500			
2500,00	33,640	2500	0,5000	5,0000			

- 8.29 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения корнеизвлечения для «Тока 0...20 мА».
 - 8.29.1 Проверку производить по схеме приложения Ж.
- 8.29.2 По методике п.п.4.3, используя клавиатуру блока, установить значения изменяемых пользователем параметров в соответствие с таблицей 3 для проводимой проверки.
- 8.29.3 Входной токовый сигнал 0...5 мA, 0...20 мА или 4...20 мА (в зависимости от исполнения) поступает на вход, преобразуется в напряжение и поступает на схему корнеизвлечения (КИ). Схема корнеизвлечения обеспечивает на выходе сигнал, пропорциональный корню квадратному от входного сигнала в соответствии с выражением (5);

Iвых.= Iвых.
$$min + \sqrt{\frac{(Iвх. - Iвх. min) x (Iвых. max - Івых. min)^2}{Iвх. max - Івх. min}}$$
 (5);

где:

- Івых. выходной сигнал канала КИ, мА;
- Івх. min, Івх. max предельные значения диапазона изменения входного сигнала (в соответствии с таблицами 26, 27, 28), мА;
- Івых. min, Івых. max предельные значения диапазона изменения выходного сигнала (в соответствии с таблицами 26, 27, 28), мА;
 - Івх. входной сигнал канала КИ, мА.
- $8.29.4\,$ При помощи прибора ИКСУ 2000 подать входной сигнал согласно таблице 26. Зафиксировать величины падения напряжения на резисторе R1 U_{R1 действ.і} и значение выходного кода цифрового канала $K_{\text{действ I}}$ для всех значений входного сигнала X_i согласно таблице 26.
- $8.29.5\,$ Измерение величины падения напряжения на резисторе R1 $U_{R1\,$ действ</sub> и значение выходного кода цифрового выхода $K_{\text{действ}}$ производить по методике п.п. 8.8.5. Рассчитать значение основной приведенной погрешности по методике п.п. 8.8.9, п.п. 8.8.10.
- 8.29.6 Значения задаваемых входных и расчетных выходных параметров блока заданы в таблице 26.

Таблица 26

Таолица 20								
Диапазон изменения	Диапазо	Диапазон изменения цифрового и аналогового выходного сигнала						
$I_{\text{Bx}} = 020 \text{ мA}$	$I^{\text{вех}} = 0$	5 мА	$I_{\text{вых}} = 420 \text{ MA}$		$I_{\text{вых}} = 020 \text{ MA}$			
Измеряемое значение		Расчетное значение						
I _{bx} , MA	I _{вых} , мА	U _{вых} , В	I _{вых} , мА	U _{вых} , В	I _{вых} , мА	U _{вых} , В		
0 0,050 0,200 0,968 1,058 5,000 9,800 20,000	0 0,250 0,500 1,100 1,150 2,500 3,500 5,000	0 0,025 0,050 0,110 0,115 0,250 0,350 0,500	4,000 4,800 5,600 7,520 7,680 12,000 15,200 20,000	0,400 0,480 0,560 0,752 0,768 1,200 1,520 2,000	0 1,000 2,000 4,400 4,600 10,000 14,000 20,000	0 0,100 0,200 0,440 0,460 1,000 1,400 2,000		

Значение у2 должно соответствовать п. 10 таблицы 1.

8.30 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения корнеизвлечения для «Тока 4...20 мА».

Проверку проводить по методике п.п.8.29.1. Значения задаваемых входных и расчетных выходных параметров блока заданы в таблице 27.

Таблица 27

Диапазон изменения	Диапазон изменения цифрового и аналогового выходного сигнала						
входного сигнала $I_{\text{вх}} = 420 \text{ мA}$	$I^{\text{вых}} = 0$	5 мА	$I_{\text{вых}} = 420 \text{ MA}$		$I_{\text{вых}} = 020 \text{ MA}$		
Измеряемое значение		Расчетное значение					
I _{BX} , MA	I _{вых} , мА	U _{вых} , В	I _{вых} , мА	$U_{\text{вых}}, \\ B$	I _{вых} , мА	U _{вых} , В	
4,0000 4,0400 4,1600 4,7744 4,8464 8,0000 11,840 20,000	0 0,250 0,500 1,100 1,150 2,500 3,500 5,000	0 0,025 0,050 0,110 0,115 0,250 0,350 0,500	4,000 4,800 5,600 7,520 7,680 12,000 15,200 20,000	0,400 0,480 0,560 0,752 0,768 1,200 1,520 2,000	0 1,000 2,000 4,400 4,600 10,000 14,000 20,000	0 0,100 0,200 0,440 0,460 1,000 1,400 2,000	

Значение γ_2 должно соответствовать п. 10 таблицы 1.

8.31 Определение допускаемой основной приведенной погрешности по аналоговому и цифровому выходам в режиме измерения корнеизвлечения для «Тока 0 – 5 мА».

Проверку проводить по методике п.п.8.29.1. Значения задаваемых входных и расчетных выходных параметров блока заданы в таблице 28.

Таблица 28

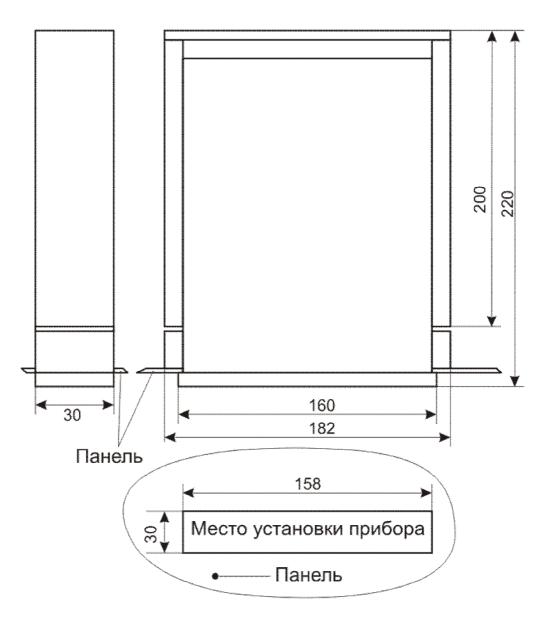
Диапазон изменения	Диапазон изменения цифрового и аналогового выходного сигнала						
входного сигнала $I_{BX} = 05 \text{ мA}$	$I_{\text{вых}} = 0$	5 мА	$I_{\text{вых}} = 420 \text{ мA}$		$I_{\text{вых}} = 020 \text{ MA}$		
Измеряемое значение		Расчетное значение					
I _{bx} , MA	I _{вых} , мА	U _{вых} , В	I _{вых} , мА	U _{вых} , В	I _{вых} , мА	$U_{\text{вых}},\ B$	
0 0,0125 0,0500 0,2420 0,2645 1,2500 2,4500 5,0000	0 0,250 0,500 1,100 1,150 2,500 3,500 5,000	0 0,025 0,050 0,110 0,115 0,250 0,350 0,500	4,000 4,800 5,600 7,520 7,680 12,000 15,200 20,000	0,400 0,480 0,560 0,752 0,768 1,200 1,520 2,000	0 1,000 2,000 4,400 4,600 10,000 14,000 20,000	0 0,100 0,200 0,440 0,460 1,000 1,400 2,000	

Значение γ_2 должно соответствовать п. 10 таблицы 1.

- 8.32 Оформление результатов поверки.
- 8.32.1 Результаты поверки блока оформляют свидетельством о поверке установленной формы по ПР.50.2.006-94 с указанием результатов поверки на его обратной стороне (или протоколом произвольной формы) или путем записи в паспорте результатов поверки, заверенных поверителем с нанесением оттиска поверительного клейма.
- 8.32.2 При отрицательных результатах поверки блоки к применению не допускаются.

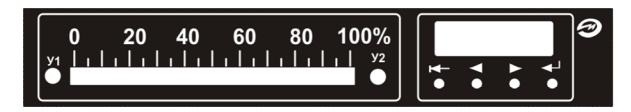
9 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 9.1 Техническое обслуживание блоков сводится к соблюдению правил эксплуатации, хранения и транспортирования, изложенных в настоящем руководстве по эксплуатации, профилактическим осмотрам и ремонтным работам.
- 9.2 Профилактические осмотры проводятся в порядке, установленном на объектах эксплуатации блоков, но не реже двух раз в год и включают:
 - внешний осмотр;
- проверку крепления блока, линий связи блока с первичными преобразователями, заземляющего соединения и отсутствия обрыва заземляющего провода;
 - проверку электрического сопротивления изоляции;
 - проверку электрической прочности изоляции;
- проверку основной приведенной погрешности блока в точках, соответствующих 5 %, 50 %, 95 % диапазона измерения в соответствии с данными таблицы 2.
- 9.3 Блоки с неисправностями или не прошедшие периодическую поверку, подлежат замене.


10 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

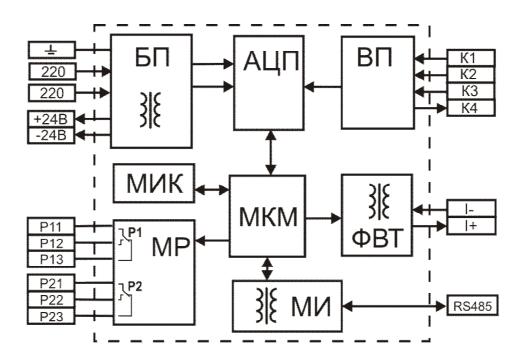
- 10.1 Транспортирование блоков должно производиться всеми видами транспорта в крытых транспортных средствах в соответствии с правилами перевозки грузов, действующими на данном виде транспорта.
- 10.2 Условия транспортирования блоков должны соответствовать условиям хранения 5, для морских перевозок в трюмах условиям хранения 3 по ГОСТ 15150.
- 10.3 В складских помещениях изготовителя и потребителя блоки должны храниться по условиям хранения 1 по ГОСТ 15150. Воздух в помещении не должен содержать пыли и примесей агрессивных паров и газов, вызывающих коррозию.
- 10.4 Ящики с блоками должны транспортироваться и храниться в определенном положении, обозначенном манипуляционными знаками.
 - 10.5 При распаковывании не допускаются удары по ящику и сильные сотрясения.

Приложение А


ГАБАРИТНЫЕ РАЗМЕРЫ БЛОКА

исполнение - 02

Приложение Б


ВАРИАНТ ИСПОЛНЕНИЯ ПЕРЕДНЕЙ ПАНЕЛИ БЛОКА

Возможны исполнения передней панели блока по заказу. При необходимости предоставляется шаблон, выполненный в среде CorelDraw.

Приложение В

СТРУКТУРНАЯ СХЕМА БЛОКА

- БП источник питания;
- ВП входной преобразователь;
- МИК модуль индикации и клавиатуры;
- МР модуль реле;
- МКМ микроконтроллерный модуль;
- АЦП аналого-цифровой преобразователь;
- ФВТ формирователь выходного тока;
- МИ модуль интерфейса.

Приложение Г

АЛГОРИТМ РАБОТЫ АНАЛОГОВОЙ ШКАЛЫ И РЕЛЕ Р1 И Р2

Аналоговая шкала отображает уровень измеряемой величины и значения уставок, в зависимости от выбранного режима (параметры Lt и LP, см. таблицу 3 п.22, 23 и таблицу 4). Состояния реле зависят от соотношения уровня измеряемой величины, значений уставок, гистерезиса и выбранного режима работы аналоговой шкалы.

Светодиоды У1 и У2 отображают превышение уровня измеряемого сигнала установленных нижнего и верхнего пределов измерения соответственно (см. таблицу 3 пп.6-10).

Связь выходных состояний пороговых устройств с величиной входного сигнала и значениями уставок задается соотношениями (Γ .1) и показана на рисунке Γ .1.

$$Si = 1$$
, если $X > (USi +/- GSi)$
 $Si = 0$, если $X \le (USi +/- GSi)$

где:

і – номер порогового устройства;

Si – выходное состояние порогового устройства;

Х – измеренное значение входного сигнала;

USi – значение уставки уровня срабатывания;

GSi – значение уставки гистерезиса.

В соотношениях (Γ .1) знак «+» соответствует текущему выходному состоянию ПУi Si=0, знак «-» - Si=1.

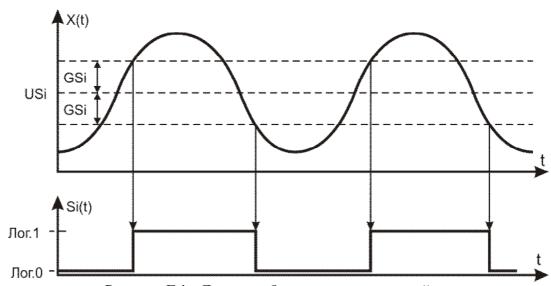
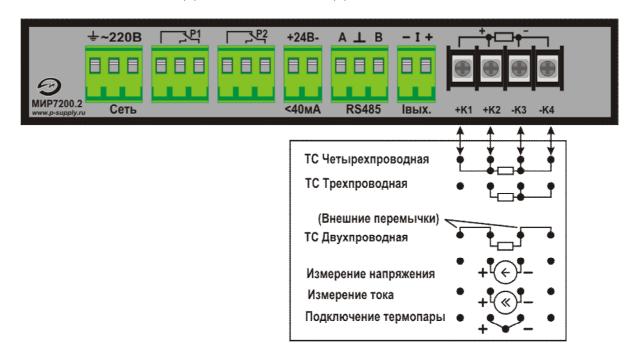



Рисунок Г.1 - Логика работы пороговых устройств

<u>Примечание:</u> По заказу потребителя возможны поставки блоков с отличными от описанных алгоритмов управления состояниями реле и алгоритмов работы аналоговой шкалы. Алгоритмы согласуются при заказе.

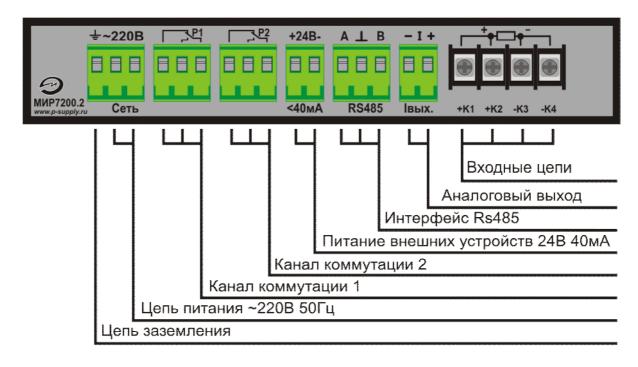
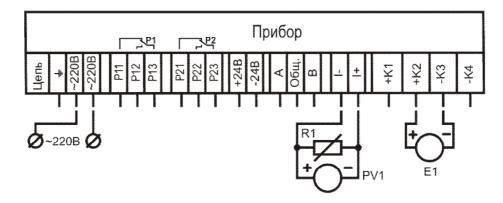

Приложение Д

СХЕМА ПОДКЛЮЧЕНИЯ ВХОДНЫХ СИГНАЛОВ БЛОКА


Приложение Е

НАЗНАЧЕНИЕ КЛЕММНЫХ СОЕДИНЕНИЙ БЛОКА

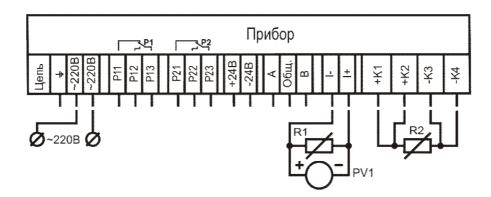
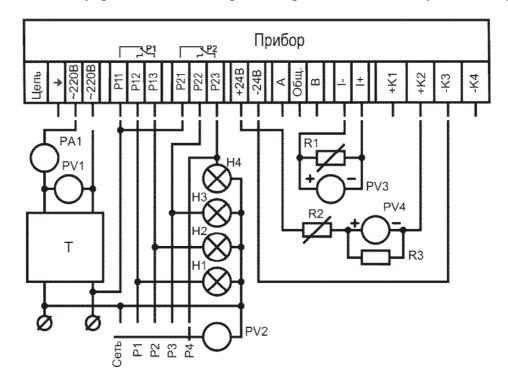

СХЕМЫ ПОВЕРОК

Схема подключения блока при определении основной приведенной погрешности в режимах измерения тока, сигналов от термопар и напряжения

- R1 образцовая катушка сопротивлений R331 100 Ом;
- PV1 мультиметр PC5000;
- Е1 калибратор-измеритель ИКСУ-2000.

Схема подключения блока при определении основной приведенной погрешности в режимах измерения сопротивления (в том числе сигналов от термометров сопротивления)



- R1 образцовая катушка сопротивлений R331 100 Ом;
- R2 магазин сопротивлений P4831;
- PV2 мультиметр PC5000.

Приложение И

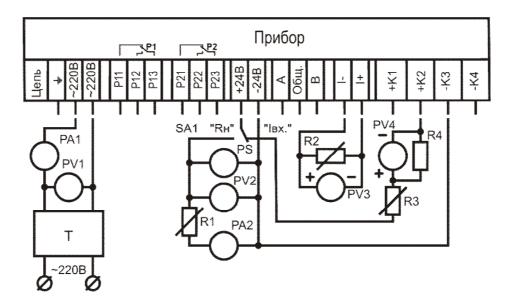

СХЕМЫ ПРОВЕРОК

Схема проверки функционирования сигнализации и управления блока при непосредственной коммутации нагрузки

- Н1...Н4 лампа накаливания 220 В/не более 40 Вт;
- R1 образцовая катушка сопротивлений R331 100 Ом;
- R2 магазин сопротивления P33;
- R3 образцовая катушка сопротивления P331 100 Ом;
- PV1, PV2, PV3, PV4 мультиметр PC5000;
- PA1 мультиметр PC5000;
- S1 переключатель галетный ПГ3-11П-1Н;
- Т ЛАТР AOCH-20-220-75 Гц.

Схема проверки источника питания блока

- R1, R2- образцовая катушка сопротивления P331 100 Ом;
- R3 магазин сопротивления P48311;
- R4 резистор ПП3-40 1 кОм 10 %;
- PV1, PV2, PV3, PV4 мультиметр PC5000;
- PA1, PA2 мультиметр PC5000;
- PS осциллограф C1-64;
- SA1 переключатель П2E 13;
- T ЛАТР AOCH-20-220-75 Гц.

СХЕМА ПОДКЛЮЧЕНИЯ БЛОКА К ПК

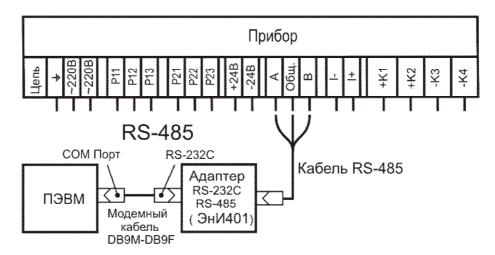


Рисунок К.1 - Схема подключения блока по СОМ-порту

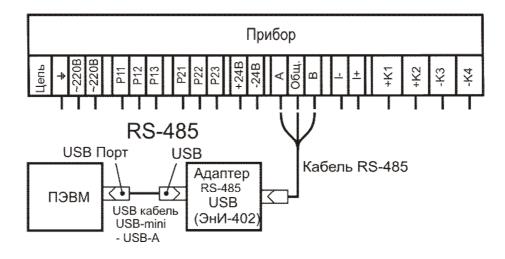


Рисунок К.2 - Схема подключения блока по USB-порту

При использования интерфейса RS-485 блок подключается к ПК через адаптер, преобразующий интерфейс RS-232 в RS-485 или USB в RS-485. Адаптер RS-232 в RS-485 соединяется с компьютером стандартным модемным кабелем DB9M-DB9F, поставляемым вместе с адаптером. Адаптер USB в RS-485 соединяется с компьютером стандартным USB-mini – USB-А кабелем, поставляемым вместе с адаптером.

Длина кабеля RS-485 не более 1200 м (при соблюдении правил разводки сети интерфейса RS-485). Адаптеры преобразователя интерфейсов RS-232 в RS-485 ЭнИ-401 и USB в RS-485 ЭнИ-402 с кабелями подключения к компьютеру, инструкцией и рекомендациями по правильной разводке сетей RS-485 поставляются по отдельному заказу.